

A Mangrove Blue Carbon Infographic made by the Integrated network-based Management for Southeast Asia coasts (InMSEA) Project

APRIL 2023

PREFACE

Mangrove forests, a fortress against climate change impacts, are deteriorating. Mangroves capture and store more than twice the CO ("¿blue carbon") than other forests. They dampen waves during typhoons and shelter many fisheries species. But, they also suffer from climate change impacts, on top of unregulated deforestation, land-use change, reclamations, and pollution.

Mangrove forests are one of our nature-based solutions against climate change. Their decline has to stop. How? Research, monitor, raise awareness, pass policies, initiate collective action.

Mangalantaw is a play of two words that best describes this book: Mangal, referring to mangrove forests, and Lantaw, a Bisaya term meaning "to watch or look". This series of infographics serves as a guide to anyone - citizens, scientists, businessmen, advocates - who want to contribute to mangrove conservation and restoration.

Tara, mangalantaw kita!

ACKNOWLEDGMENTS

We are deeply grateful to the following for their contributions in the success of this work of art and science:

to our Project's funding and monitoring agencies: the Department of Science and Technology (DOST) and the Philippine Council for Industry, Energy and Emerging Technology Research and Development (DOST-PCIEERD);

to our Project Staffs: Dr. Ariel Blanco, Dr. Maria Lourdes San Diego - McGlone, and Dr. Miguel Fortes;

to our local partners: the Local Government Units of Balangiga and Lawaan, University of the Philippines Visayas - Tacloban College, and to the Blue Carbon Network (BCnet) Visayas;

and to the project that started the Blue Carbon Agenda in the country: the "Comprehensive Assessment and Conservation of Blue. Carbon Ecosystems and their Services in the Coral Triangle" (BlueCARES) Project.

God bless this work and the Philippines. Pag-ibig sa tinubuang lupa!

TABLE OF CONTENTS

Page No.

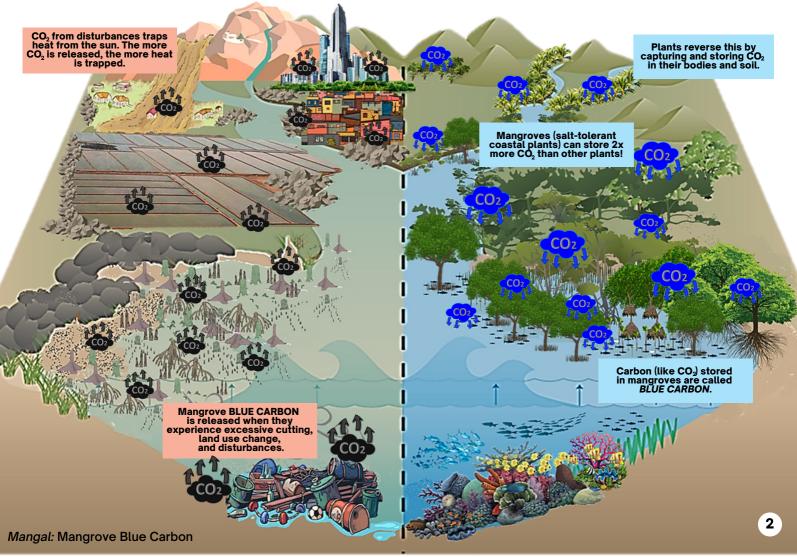
MANSAL: Mangrove Blue Carbon

1

Mantaw: Monitoring Mangrove Blue Carbon

3

Mangalantaw: Mangrove Blue Carbon Management


6

FEATURING:

Mang Groovy,

the enthusiastic researcher with a big heart for the mangrove and the community.

Lantaw: Monitoring Mangrove Blue Carbon

How do we know if our mangrove forests are efficiently capturing and storing carbon? WE MONITOR!

We monit overall he and prior

Monitoring refers to observing and assessing mangrove forests regularly over a period of time.

We monitor to determine mangrove overall health, carbon stocks, and priority sites.

It's impossible to measure all mangroves in your site. Instead, you can plot using a shape of your choice:

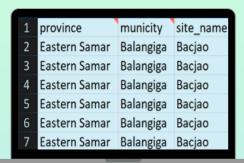
Square plot (10 x 10 m)

(7 m radius)

To determine monitoring sites, initial surveys can be done by:

Drone and remote sensing images

Boat surveys


Land surveys

In these plots, you will collect data for both trees and soil. Vegetation survey measuring: girth at breast height tree height Soil collection using a soil core

Data Analytic Platform

Computing mangrove tree carbon is as easy as 1-2-3 with the Blue Carbon Data Analytic Platform! Just **encode**, **upload**, and **compute**!

- 1. **ENCODE** your data in a spreadsheet with these columns:
 - province Province of study site
 - · municity Municipality or City of study site
 - site_name Specifics of study site
 - plot_id Plot ID or code
 - species Species name of tree
 - gbh_cm Girth at breast height of tree, in centimeters
 - height_m Tree height, in meters
 - cw_m Canopy width, in meters
 - o ch_m Canopy height, in meters
 - status Status of tree, either "live" or "dead"

2. <u>UPLOAD</u> the table (CSV or TXT file) in the Blue Carbon Data Analytic Platform.

- Fill in the required information, then click "Next".
- Select "Compute Biomass Carbon Stock from Raw Data"
 - Upload CSV or TXT file.
 - Separator: Select "Comma" if CSV, and "Tab" if TXT.
 - Plot Type: Select whether plot shape is Circular or Square.
 - Plot Side or Radius: Type plot side length or radius in meters.

3. Click <u>COMPUTE</u> to show the processed data and computed tree carbon stocks!

Sediment Carbon Stock

Your soil samples have a long way to go. Don't worry! Here is a step-by-step guide on how to compute sediment carbon stock from your samples:

Mangalantaw: Mangrove Blue Carbon Management

Your data from regular mangrove monitoring is a powerful convincing tool!

Here is how you can use your data to spread awareness and promote mangrove conservation:

A. Show your results to the coastal community

B. Present your results to the government units

Once you convince and encourage them, the government has the power and resources (funding!) to ensure continuous mangrove conservation, restoration, and monitoring.

C. Implement policies on continuous monitoring and conservation

With enough support, resources, and funding, you can do a lot of activities to conserve, restore, and monitor mangrove forests and their blue carbon!

ATTRIBUTIONS

Some of the graphics used in this book are from the following sources and with the following license:

Bruguiera sp. by Jatmika Jati under stock.adobe.com
Sea and clouds watercolor by CreativeValuation under Canva stock images

Modifications include re-coloring, cropping, and combining.

AUTHORS

John Kenneth R. Fraga Research Associate

Miraflor A. Pandela-Sanchez

Consultant/Artist

Russel Christine B. Corcino
Research Associate

Shaina C. Samoza
Research Associate

Kristina Di V. Ticman Research Associate

Hanna Hasmin T. Estadilla Project Assistant

Severino G. Salmo, III
Project Leader

